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Chapter Two

ELECTROSTATIC
POTENTIAL AND
CAPACITANCE

2.1 INTRODUCTION

In Chapters 6 and 8 [Class XI), the notion of potential energy was
introduced. When an external force does work in taking a body from a
point to another against a force like spring force or gravitational force,
that work gets stored as potential energy of the body. When the external
force is removed, the body moves, gaining kinetic energy and losing
an equal amount of potential energy. The sum of kinetic and
potential energies is thus conserved. Forces of this kind are called
conservative forces. Spring force and gravitational force are examples of
conservative forces.

Coulomb force between two {stationary) charges, like the gravitational
force, is also a conservative force. This is not surprising, since both have
inverse-square dependence on distance and differ mainly in the
proportionality constants — the masses in the gravitational law are
replaced by charges in Coulomb’s law. Thus, like the potential energy of
a mass in a gravitational field, we can define electrostatic potential energy
of a charge in an electrostatic field.

Consider an electrostatic field E due to some charge configuration.
First, for simplicity, consider the field E due to a charge Q placed at the
origin. Now, imagine that we bring a test charge g from a point R to a
point P against the repulsive force on it due to the charge Q. With reference
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Coulomb’s law. We omit this proof here.
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(ii) Equation (2.2) defines potential energy difference in terms
of the physically meaningful quantity work. Clearly,
potential energy so defined is undetermined to within an
additive constant.What this means is that the actual value
of potential energy is not physically significant; it is only
the difference of potential energy that is significant. We can
always add an arbitrary constant o to potential energy at
every point, since this will not change the potential energy
difference:

W, +a)-Ug +a) =U, -Ug

Put it differently, there is a freedom in choosing the point
where potential energy is zero. A convenient choice is to have
electrostatic potential energy zero at infinity. With this choice,
if we take the point R at infinity, we get from Eq. (2.2)

W,=U,-U_.=U, (2.3)

Since the peint P is arbitrary, Eq. (2.3) provides us with a
definition of potential energy of a charge g at any point.
Potential energy of charge q at a point (in the presence of field
due to any charge configuration) is the work done by the
external force (equal and opposite to the electric farce) in
bringing the charge g _from infinity to that point.

2.2 ELECTROSTATIC POTENTIAL

Consider any general static charge configuration. We define
potential energy of a test charge g in terms of the work done
on the charge g. This work is obviously proportional to g, since
the force at any point is gE, where E is the electric field at that
paoint due to the given charge configuration. It is, therefore,
convenient to divide the work by the amount of charge g, so
that the resulting quantity is independent of q. In other words,
work done per unit test charge is characteristic of the electric
field associated with the charge configuration. This leads to
the idea of electrostatic potential V due to a given charge
configuration. From Eq. (2.1), we get:

Work done by external force in bringing a unit positive
charge from point R to P

=VP_VR [:————UP;UR]

Count Alessandro Volta
(1745 - 1827) Italian
physicist, professor at
Pavia. Volta established
that the animal electri-
city observed by Luigi
Galvani, 1737-1798, in
experiments with frog
muscle tissue placed in
contact with dissimilar
metals, was not due to
any exceptional property
of animal tissues but
was also generated
whenever any wet body
was sandwiched between
dissimilar metals. This
led him to develop the
first voltaic pile, or
battery, consisting of a
large stack of moist disks
of cardboard (electro-
lyte] sandwiched
between disks of metal
(electrodes).

2.4

where Vi, and V,, are the electrostatic potentials at P and R, respectively.
Note, as before, that it is not the actual value of potential but the potential
difference that is physically significant. If, as before, we choose the

potential to be zero at infinity, Eq. (2.4) implies:

Work done by an external force in bringing a unit positive charge
from infinity to a point = electrostatic potential (V) at that point.
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In other words, the electrostatic potential (V')
at any point in a region with electrostatic field is
the work done in bringing a unit positive
charge (without acceleration) from infinity to
that point.

The qualifying remarks made earlier regarding

@qﬂ Qg potential energy also apply to the definition of
= potential. To obtain the work done per unit test
g charge, we should take an infinitesimal test charge
FIGURE 2.2 Work done on a lest charge g &g, obtain the work done §W in bringing it from
by the electrostatic ficld due to any given infinity to the point and determine the ratio
charge configuration is independent 5W/8q. Also, the external force at every point of
of the path, and depends only on ; h

ke 5 R the path is to be equal and opposite to the

its initial and final positions.
electrostatic force on the test charge at that point.

2.3 PotENTIAL DUE TO A POINT CHARGE

Consider a point charge @ at the origin (Fig. 2.3). For definiteness, take Q
to be positive. We wish to determine the potential at any point P with
position vector r from the origin. For that we must
calculate the work done in bringing a unit positive
test charge from infinity to the point P. For @> 0,
the work done against the repulsive force on the
test charge is positive. Since work done is
independent of the path, we choose a convenient
path - along the radial direction from infinity to
the point P.
At some intermediate point P’ on the path, the

FIGURE 2.3 Work done in bringing a unit _electrostatlc force on a unit positive charge is

positive test charge [rom infinity to the Qx1 _,
point P, against the repulsive force of Aner? r
charge @ (Q > 0], is the potential at P due to e
the charge Q. where 1'is the unit vector along OP’. Work done

against this force from 1’ to r'+ Ar' is

(2.9

Q .
AW = — Ar
41:5[,1"2 (2.6)
The negative sign appears because for Ar’ < 0, AW is positive . Total
wark done (W) by the external force is obtained by integrating Eq. (2.6)
fromr'=wtor'=r,

we[—2 a9 |- 2

amer? T Amegr|.  4mer

This, by definition is the potential at P due to the charge Q

V() =—2

4ng,r
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Equation (2.8) is true for any 5 T T T T T T T
sign of the charge @, though we 4.5 L
considered @ > 0 in its derivation.
For Q< 0, V<0, i.e., work done (by
the external force) per unit positive
test charge in bringing it from . 3}

3.5
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This, by definition is the patential at P due to the charge Q
Q
54 Vi) = (2.8)

Aneg,r
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Equation (2.8) is true for any 5
sign of the charge Q. though we 4.5
considered Q > 0 in its derivation.
For Q< 0, V<0, i.e., work done (by
the external force) per unit positive
test charge in bringing it from 3
infinity to the point is negative. This 25
is equivalent to saying that work
done by the electrostatic force in 2
bringing the unit positive charge L5
form infinity to the point P is 1
positive. [This is as it should be,
since for Q < 0, the force on a unit .5 \K
positive test charge is attractive, so 0 0 o5 1 15 2 25 3 35 4 a5
that the electrostatic force and the
displacement (from infinity to P) are FIGURE 2.4 V}farialion of potential V with r [in units of
(Q/4nrgy)) m] (blue curve] and field with r [in units
of (Q/4ne,) m™] (black curve) for a point charge Q.

4
3.5

in the same direction.] Finally, we
note that Eq. (2.8) is consistent with
the choice that potential at infinity
be zero.

Figure (2.4) shows how the electrostatic potential (=< 1/r) and the
electrostatic field (s 1/r?) varies with r.

Example 2.1

(a) Calculate the potential at a point P due to a charge of 4 x 1077C
located 9 cm away.

(b) Hence obtain the work done in bringing a charge of 2 x 10° C
from infinity to the point P. Does the answer depend on the path
along which the charge is brought?

Solution

4x107°C

@ V= L 9 _gy10°Nm? c%x
ang, r 0.09m

=4 x10*V

[b] W=gV=2x10"Cx4x10'V

=8x 10°J
No, work done will be path independent. Any arbitrary infinitesimal
path can be resolved into two perpendicular displacements: One along
r and another perpendicular to r. The work done corresponding to
the later will be zero.

2.4 PoTENTIAL DUE TO AN ELECTRIC DIrOLE

As we learnt in the last chapter, an electric dipole consists of two charges
gand -q separated by a (small) distance 2a. Its total charge is zero. It is
characterised by a dipele moment vector p whose magnitude is g x 2a
and which points in the direction from -g to g (Fig. 2.5). We also saw that
the electric field of a dipole at a point with position vector r depends not
just on the magnitude r, but also on the angle between r and p. Further,
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Using Eqgs. (2.9) and (2.13) and p = 2qa, we get
q 2acosf _ pcosf

2

V= = 5
4rne, T 4ne,r

(2.14)

56 Now, p cos 8= p+

Electrostatic Potential
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where r is the unit vector along the position vector OP.
The electric potential of a dipole is then given by

Ve 1 pt
“ang, ¢ (r>>d (2.15)

Equation (2.15) is, as indicated, approximately true only for distances
large compared to the size of the dipole, so that higher order terms in
a/rare negligible. For a point dipole p at the origin, Eq. (2.15) is, however,
exact.

From Eq. (2.15), potential on the dipole axis (6 = 0, nt} is given by

1

V_itln:so r (2.16)

(Positive sign for # = 0, negative sign for @ = n.) The potential in the
equatorial plane (#=n/2) is zero.

The important contrasting features of electric potential of a dipale
from that due to a single charge are clear from Eqs. (2.8) and (2.15):
(i} The potential due to a dipole depends not just on r but also on the

angle between the position vector r and the dipole moment vector p.

(It is, however, axially symmetric about p. That is, if you rotate the

position vector r about p, keeping 6 fixed, the points correspeonding

to P on the cone so generated will have the same potential as at P.)

i) The electric dipole potential falls off, at large distance, as 1/ = not as
1/r, characteristic of the potential due to a single charge. (You can
refer to the Fig. 2.5 for graphs of 1/r” versus r and 1/r versus r,
drawn there in another context.)

2.5 PoOTENTIAL DUE TO A SYSTEM OF CHARGES

Consider a system of charges Qs Gp--- Gy with position vectors S
r, relative to some origin (Fig. 2.6). The potential V| at P due to the charge
q,is
= La

' ang, 1,

where r; is the distance between q, and P.
Similarly, the potential V, at P due to g, and

V, due to g, are given by

vel % _ 1 @
£ 4me, Np ' B 4mne, My

where r,, and r,, are the distances of P from
charges q, and q,, respectively: and so on for the
potential due to other charges. By the FIGURE 2.6 Potential at a point due to a
superposition principle, the potential Vat P due system of charges is the sum of potentials
to the total charge configuration is the algebraic duc to individual charges.
sum of the potentials due to the individual
charges
V=V, +V,+ .. +V, (2.17)
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